Artifacts in AFM topography images of TMD monolayers
Initially motivated by work with graphene, the broad class of two dimensional (2D) materials has generated enormous interest. Monolayers and heterostructures of transition metal dichalcogenides (TMDs) have attracted intense investigation as the long awaited 2D semiconductor analogs of graphene. Due to their direct bandgap, TMD monolayers are extremely promising candidates for atomically thin electronic, optical, and photovoltaic applications.
Before the possibility of using TMD monolayers in various applications, a comprehensive characterization of these materials is required. Atomic force microscopy (AFM) is able to characterize topography including loosely bound contaminants and adlayers through amplitude-phase-distance and force-distance curves, and has the additional potential for probing local electronic and magnetic properties. However, unwanted interactions between the tip and sample result in forces on the same order as the force from the property under investigation. While existing reports contain a range of results, anomalies in AFM scans have not been fully explored. The interaction forces between TMD and substrate have been known to affect the measured step height (or thickness) of TMD monolayers in AFM. Decoupling various forces for analysis requires a full understanding of the tip-sample interactions. Such a description of tip-sample forces and step height anomalies relating to TMDs has not yet been reported.
In our work, we provide a detailed look into the analysis of artifacts in AFM topography images of WS2 monolayers including varied step height (WS2 showing different thicknesses depending on the AFM settings) and contrast inversion (WS2 appearing below the substrate). We describe our findings in terms of varying tip-sample interactions and capillary forces, and find that the step height depends strongly on the tip amplitude and set point. Furthermore, we prescribe tool settings to prevent contrast inversion and discuss “correct” TMD step height measurements, as we find our results applicable to other TMDs with similar wetting properties such as WSe2 and MoSe2.
Our key findings include 1) When present, capillary forces dominate measurement errors; 2) Removal of substrate water layers reduces the variation in height measurement from +/-6 nm to +/-0.5 nm; 3) When substrate water layers are present, contrast inversion is corrected by setting the AFM with high tip amplitudes and low set points; we show that high tip amplitudes reduce capillary forces; 4) When substrate water layers are absent, contrast inversion is corrected by setting the AFM with low amplitudes and high set points, which drive operation into the repulsive regime; and 5) Contaminants must be characterized through amplitude-phase-distance and force-distance curves, considering presence of surface contaminants and water layers.
This work represents a milestone in determining the “correct” height measurement in AFM, which cannot be determined from AFM topography images alone, but must be found through techniques such as force-distance characterization. Mr. Christian Cupo and Mr. Kyle Godin have experimentally led this project.
Kyle Godin, Christian Cupo, EH Yang
Stevens Institute of Technology, USA
Publication
Reduction in Step Height Variation and Correcting Contrast Inversion in Dynamic AFM of WS2 Monolayers.
Godin K, Cupo C, Yang EH
Sci Rep. 2017 Dec 19
Related Articles:
Optimal optoelectronic properties of MoS2/h-BN/WSe2… With the development of next generation semiconductor photoelectric devices towards miniaturization, high performance and high integration, traditional bulk materials are facing enormous challenges. The discovery of graphene has opened the… | |
Ti3C2-MXene based fluorescent biosensor for rapid… Over the last decade, zero-dimensional (0D) and two-dimensional (2D) nanomaterials such as nanostructured metals, and graphene derivatives delivered an extraordinary impact as fluorescence quenchers or energy acceptors in developing fluorescent… | |
Ultra-wideband absorption based on… Due to high carrier mobility, the graphene has attracted enormous interests in developing high-speed photodetectors. In this study, for practical high-performance photodetectors, we focus on the remarkable enlargement of absorption… | |
Layer-dependent fast electron transfer at the… The photo-induced effective interfacial charge separation in Zn phthalocyanine/few-layer graphene heterojunctions has been a promising observation for fabrication of efficient energy-conversion devices. Few-layer graphene are two-dimensional (2D) systems composed of… | |
Bundt-pan antenna can concentrate optical infrared… Optical infrared detection devices are becoming smaller in size with tiny active areas in the range of a few micrometers or even nanometers, such as photodetectors, solar cells, cameras, and… | |
Cs adsorption by Mn‒Fe-based Prussian blue analogs… The Fukushima nuclear accident triggered a massive release of radioactive cesium (Cs) isotopes into the environment and generated a large amount of contaminated water. Because Cs isotopes pose serious threats… |
Leave a Reply
You must be logged in to post a comment.