Metal-organic framework with dangling sulfonate groups for enhanced proton conductivity
Metal-organic frameworks (MOFs) provide a versatile platform for tuning the chemical functionality of pore surfaces and thus have attracted an increasing amount of attention for applications in gas storage, molecular separation, sensing, and catalysis. In contrast to the widely-studied carboxylate-based MOFs, sulfonate-based MOFs have been significantly less investigated and exhibit a lower degree of structural predictability, which can be attributed to the versatile coordination modes of the sulfonate monoanions (RSO3–) to the metal.
However, permanently porous MOFs constructed with organosulfonates (i.e., alkylsulfonates or aromatic sulfonates) as organic linkers may offer a functional platform for highly polar pore surface including potential applications in chemical recognition and/or separation as well as proton conductivity.
Engineering of missing metal-linker connectivities in MOFs is an intriguing phenomenon for tailoring their properties, such as enhancing their gas sorption and catalytic performances. This type of crystal irregularity will bring advantages to realize coordinatively unsaturated metal sites and/or dangling functional groups (i.e. linker-pendant, rather than node-coordinated), thus strongly affecting its mass-transport pathways. Inherent defects occur in several MOFs possessing a low degree (<10 %) of the missing metal-linker connectivity, which drastically enhanced the catalytic activity and gas sorption properties. The design of proton-conducting materials is of great interest in the proton-exchange-membrane fuel cells, which are considered as a promising system for converting clean H2 fuels into electricity. The well-developed perfluorosulfonic acid polymers (e.g. Nafion) reach a high proton conductivity of 10-1 to 10-2 S·cm-1 under humid conditions. However, they require functionalization with sulfonate groups, and have limited stability owing to their organic nature.
In this work, we employ a linear organosulfonate (1,4-benzenedimethanesulfonate, 1,4-BDMS) and a linear N-donor 4,4’-bipyridine (4,4’-bipy) as mixed struts to construct a highly porous 3-D “I0O3” network, using Cheetham et. al.’s proposed nomenclature. The resultant organosulfonate-based MOF (TMOF-2) affords a high porosity of 37.2 %, and demonstrates high robustness over a wide range of pH as well as aqueous boiling conditions. Due to the rather weak coordinating tendency of the sulfonate groups, X-ray crystallography of this Cu(II)-based MOF unambiguously revealed the presence of the missing metal-linker connectivity in the framework. This unprecedented crystal irregularity achieves a dense, ordered array of the free (non-coordinated) sulfonate groups and the coordinatively accessible Cu2+ centers. The inherently missing Cu2+-sulfonate connectivity in the interconnected pore channels shows a remarkably enhanced proton conductivity of 1.23×10-4 S·cm-1 (90 °C, 98% relative humidity), which is over two orders of magnitude than the other sulfonate-based MOF with a complete metal-ligand connectivity. This is the first example of proton conductivity control in a MOF using its missing metal-ligand connectivities. The pendant sulfonate groups along with the “inert” nature of the MOF significantly enhance the proton conduction of the material. This work opens a promising route in rational synthesis of porous, robust sulfonate-based MOFs with missing metal-ligand connectivity and related properties.
Zhang Guiyang, Fei Honghan
Shanghai Key Laboratory of Chemical Assessment and Sustainability,
School of Chemical Science and Engineering, Tongji University, Shanghai, P. R. China
Publication
Missing metal-linker connectivities in a 3-D robust sulfonate-based metal-organic framework for enhanced proton conductivity.
Zhang G, Fei H
Chem Commun (Camb). 2017 Apr 6
Related Articles:
![]() | Are there differences in structural and mechanical… Spectrin is a cytoskeletal protein that plays an important role in maintenance of plasma membrane integrity and cytoskeletal structure. It determines the strength, mechanical stability and capacity for deformation of… |
![]() | Functional significance of interhelical interactions… Microbial rhodopsins are photoreceptive seven-transmembrane proteins that contain all-trans retinal as a chromophore. Upon photon absorption, these proteins undergo a cycling photoreaction, where first the initial trans-to-cis isomerization of retinal… |
![]() | Hydrogen storage in lithium-terminated boron chains Hydrogen can be used as alternative energy source because of many advantages. Despite the high energy content by mass, hydrogen has low density, and it is necessary to develop an… |
![]() | Lipid membrane nanosensors for environmental monitoring Research on environmental and food biosensing remains blooming for two decades now, attracting scientists from diverse fields. From an analytical viewpoint, biosensors offer a number of benefits when compared to… |
![]() | Nanofabrication of mechano-bactericidal surfaces The adaptation of bacteria to survive in the presence of antibiotics and their ability to form biofilms on conventional antibacterial surfaces has led to an increase in persistent infections caused… |
![]() | Molecular motion of propane in silica pores:… Understanding how fluids, and notably hydrocarbon gases, seep through porous rocks in the terrestrial environment is essential to understand the fundamental processes involved and also to aid better recovery of… |
Leave a Reply
You must be logged in to post a comment.