Climatic connectivity may drive bird migration strategies
To maximize fitness, migratory organisms must choose the best place and time to perform their fundamental activities in the face of unpredictable variation in ecological conditions. Because natural selection strongly penalizes the individuals that fail to synchronize their activities with current environmental conditions, species have evolved to track cyclical or otherwise predictable changes in ecological settings. In contrast, fluctuations over shorter periods of major ecological factors that heavily affect most organisms, like temperature or precipitations, may occur rather unpredictably. The need to accommodate such stochastic fluctuations is the apparent evolutionary reason why many organisms have retained some level of temporal flexibility in the time schedule of their activities (‘phenology’).
Plants and resident animals can directly sense the progress of seasonal variation in local ecological conditions, while migratory animals that periodically move over large distances have no direct clue as to the conditions that they will experience along their migration journey and at destination, weeks to months later. Migrants are therefore particularly susceptible to environmental uncertainties and, consequently, to the negative effects of human-driven, rapid climate change. The fitness advantages of appropriate timing of life-history events, however, is expected to select the ability to capitalize on any environmental cue that allows buffering the negative effects of unpredictability, for instance, large-scale climatic connections between distant geographical regions.
Together with our colleague Nicola Saino, we used information from ringing data for 270 barn swallows Hirundo rustica that were captured during breeding in Europe and were later recovered during wintering in Africa (or vice versa) during the period 1930-2009. We tested if correlations exist between temperatures in the wintering sites in sub-Saharan Africa just before the start of northward pre-nuptial (‘spring’) migration and the temperatures at their individual breeding sites in Europe at the time of spring arrival from migration, several weeks later. We found that such correlations do indeed exist, suggesting that migrants may obtain information on the temperatures at destination while they are still on their wintering grounds. Such time-lagged temperature correlations were not generally very strong, as could be expected. However, mild advantages arising from tuning migration schedules according to proxies on future conditions at destination can provide a selective advantage.
We also found that temperatures in the breeding European sites of individual barn swallows at the time of arrival from spring migration have significantly stronger correlations with those in their wintering sites than with those in any other locations in sub-Saharan Africa. This suggests that the choice of the wintering location might be aimed to maximize the information on annual conditions at the breeding site that is available before the start of migration. Notably, the sign of the temperature correlations between the wintering and the breeding sites varied between geographical barn swallow populations that could be identified based on previous analyses of migratory connectivity. Western European barn swallows often winter in equatorial Africa and experience positive temperature correlations whereas Eastern European barn swallows winter in southern Africa and experience negative correlations.
Our results lead to hypothesize that other migratory species may use information from environmental cues at one end of their migration journey to adaptively modulate their migration phenology. In addition, they suggest that the existence of time-lagged climatic correlations can have a role in shaping the evolution of migration strategies, in the choice of the wintering sites and, ultimately, in the evolution of migratory connectivity. Whether this will boost the ability of populations to cope with the effects of current climate change or not, will largely depend on whether differential climate change in the breeding and in the non-breeding staging areas disrupts the existing climatic correlations between them.
Roberto Ambrosini, Mattia Pancerasa, Renato Casagrandi
Department of Environmental Science and Policy, University of Milan, Milan, Italy
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milan, Italy
Publication
Barn swallows long-distance migration occurs between significantly temperature-correlated areas.
Pancerasa M, Ambrosini R, Saino N, Casagrandi R
Sci Rep. 2018 Aug 17
Related Articles:
The complex regulation and functional significance… Across animals, variation in body size is often influenced by environmental conditions and is considered to have adaptive value. In bees, in which many species show various degrees of sociality,… | |
Effectiveness of infrared tympanic thermometry… Exposure to high solar radiation in the heat poses a thermoregulatory challenge and increased risks of exertional heat-related illness in workers and exercising individuals. Core temperature monitoring is important during… | |
Murburn concept explains why oxygen is acutely… Murburn concept (from “mured burning”, signifying a restricted uncontrolled oxidative process) provides a tangible rationale why oxygen is so quintessential for immediate maintenance of life-order. It postulates that oxygen-centered diffusible… | |
If you are cold, what two cold-sensitive ion… Human and animals are capable of perceiving temperature stimuli due to the presence in the body of specialized sensory neurons in the peripheral and central nervous system. The sense of… | |
Feedback between organisms and the environment shape… How does the environment shape biodiversity? This is a central question for both the scientific understanding of ecosystems and for practical initiatives in sustainability. Previous work has shown that a… | |
Excess nutrients cause environmental deterioration… The introduction of excess nutrients (i.e., nitrogen and phosphorus) to coastal areas can have a series of impacts. One of the most common is eutrophication—the enrichment of water with surplus… |
Leave a Reply
You must be logged in to post a comment.